

Welcome to Mesher’s documentation!

User Documentations

	Introductions
	What is mesher

	Concepts
	Sidecar

	go chassis

	DestinationResolver

	Source Resolver

	Admin API

	Get started
	Before you start

	Quick start
	Local

	Run on different infrastructure

	Sidecar injector

	User guides
	Mesher command Line
	Options

	Profile Mesher
	Configurations

	Admin API
	Configurations

	Local Health check
	Options

	Destination Resolver
	Configurations

	Protocols
	gRPC Protocol
	Configurations

	How to use mesher as sidecar proxy

	example

	Sidcar-injector Deployment and Usage
	Introduction

	Injection

	Manual sidecar injection

	Automatic sidecar injection

	How it works

	Deployment Of Sidecar-Injector

	Annotations

	Deployment of application

	Prerequisites before deploying application

	Usage of istio

	Usage of serviceComb

	Verification

Introductions

	What is mesher

	Concepts
	Sidecar

	go chassis

	DestinationResolver

	Source Resolver

	Admin API

What is mesher

Mesher is a
service mesh [https://blog.buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/]
implementation based on go chassis [https://github.com/go-chassis/go-chassis].
So it has all the features [http://go-chassis.readthedocs.io/en/latest/intro/features.html]
of go chassis like service discovery,
load balancing, fault tolerance, route management,distributed tracing etc.
it makes your service become resilience and observable

Concepts

Sidecar

Mesher leverage
distributed design pattern, sidecar [https://kubernetes.io/blog/2015/06/the-distributed-system-toolkit-patterns/]
to work along with service.

go chassis

Mesher is a light weight sidecar proxy developed on top of go-chassis,
so it has the same concepts [http://go-chassis.readthedocs.io/en/latest/intro/concepts.html] with it
and it has all features of go chassis

DestinationResolver

Destination Resolver parse request into a service name

Source Resolver

source resolver get remote IP and based on remote IP, it

Admin API

Listen on isolated port, it gives a way to interact with mesher

Get started

	Before you start

	Quick start
	Local

	Run on different infrastructure

	Sidecar injector

Before you start

Before you start, you must know what you gonna do if you use mesher as your sidecar proxy.

Assume you launched 2 services,
each of service has a dedicated mesher as sidecar proxy.

The network traffic will be: ServiceA->mesherA->mesherB->ServiceB.

To run mesher along with your services, you need to set minimum configurations as below:

	Give mesher your service name in microservice.yaml file

	Set service discovery service(service center, Istio etc) configurations in chassis.yaml

	export HTTP_PROXY=http://127.0.0.1:30101 as your service runtime environment

	(optional)Give mesher your service port list by ENV SERVICE_PORTS or CLI –service-ports

After the configurations, assume you serviceB is listening at 127.0.0.1:8080

the serviceA must use http://ServiceB:8080/{api_path} to access ServiceB

Now you can launch as many as serviceA and serviceB to make this system become a distributed system

Notice:

consumer need to use http://provider_name:provider_port/ to access provider,
instead of http://provider_ip:provider_port/.
if you choose to set step4, then you can simply use http://provider_name/ to access provider

Quick start

Local

In this case, you will launch one mesher sidecar proxy and
one service developed based on go-chassis as provider
and use curl as a dummy consumer to access this service

the network traffic: curl->mesher->service

1.Install ServiceComb service-center [https://github.com/apache/incubator-servicecomb-service-center/releases]

2.Install go-chassis [https://go-chassis.readthedocs.io/en/latest/getstarted/install.html] and
run rest server [https://github.com/go-chassis/go-chassis/tree/master/examples/rest/server]

	Build and run, use go mod(go 1.11+, experimental but a recommended way)

cd mesher
GO111MODULE=on go mod download
#optional
GO111MODULE=on go mod vendor
go build mesher.go
./mesher

4.verify, in this case curl command is the consumer, mesher is consumer’s sidecar,
and rest server is provider

export http_proxy=http://127.0.0.1:30101
curl http://RESTServer:8083/sayhello/peter

Notice:

You don’t need to set service registry in chassis.yaml,
because by default registry address is 127.0.0.1:30100,
just same service center default listen address.

Run on different infrastructure

Mesher does not bind to any platform or infrastructures, plz refer to
https://github.com/go-mesh/mesher-examples/tree/master/Infrastructure
to know how to run mesher on different infra

Sidecar injector

Mesher supply a way to automatically inject mesher configurations in kubernetes

See detail https://github.com/go-chassis/sidecar-injector

User guides

	Mesher command Line
	Options

	Profile Mesher
	Configurations

	Admin API
	Configurations

	Local Health check
	Options

	Destination Resolver
	Configurations

Mesher command Line

when you start mesher process, you can use mesher command line to specify configurations like below

mesher --config=mesher.yaml --service-ports=rest:8080

Options

–config

(optional, string) the path to mesher configuration file, default value is {current_bin_work_dir}/conf/mesher.yaml

–mode

(optional, string) mesher has 2 work mode, sidecar and per-host, default is sidecar

–service-ports

(optional, string) running as sidecar, mesher need to know local service ports,
this is to tell mesher service port list,
The value format is {protocol}-{suffix} or {protocol}
if service has multiple protocol, you can separate with comma “rest-admin:8080,grpc:9000”.
default is empty, in that case mesher will use header X-Forwarded-Port as local service port,
if it is empty also mesher can not communicate to your local service

Profile Mesher

Mesher has a convenience way to enable go pprof, so that you can easily analyze the performance of mesher

Configurations

pprof:
 enable: true
 listen: 127.0.0.0.1:6060

enable

(optional, bool) default is false

listen

(optional, string) Listen IP and port

Admin API

Configurations

admin api server leverage protocol server, it listens on isolated port, by default admin is enabled, and default value of goRuntimeMetrics is false.

To start api server, set protocol server config in chassis.yaml

cse:
 protocols:
 rest-admin:
 listenAddress: 0.0.0.0:30102 # listen addr for adminAPI

tune admin api in mesher.yaml

admin:
 enable: true
 goRuntimeMetrics : true # enable metrics

admin.enable

(optional, bool) default is false

admin.goRuntimeMetrics

(optional, bool) default is false, enable to expose go runtime metrics in /v1/mesher/metrics

Local Health check

you can use health checker to check local service health,
when service instance is not healthy, mesher will update the instance status in registry service to “DOWN”
so that other service
can not discover this instance. If the service is healthy again, mesher will update status to “UP”,
then other instance can discover it again.
currently this function works only when you use service center as registry

examples:

Check local http service

localHealthCheck:
 - port: 8080
 protocol: rest
 uri: /health
 interval: 30s
 match:
 status: 200
 body: ok

Options

port

(require, string) must be a port number, mesher is only responsible to check local service,
it use 127.0.0.1:{port} to check service

protocol

(optional, string) mesher has a built-in checker “rest”,for other protocol,
will use default TCP checker unless you implement your own checker

uri

(optional, string) uri start with /.

interval

(optional, string) check interval, you can use number with unit: 1m, 10s.

match.status

(optional, string) the http response status must match status code

match.body

(optional, string) the http response body must match body

Destination Resolver

Destination Resolver is a module to parse each protocol request to get a target service name.
you can write your own resolver implementation for different protocol.

Configurations

example

plugin:
 destinationResolver:
 http: host # host is a build-in and default resolver, it uses host name as service name
 grpc: ip

plugin.destinationResolver

(optional, map) here you can define what kind of resolver, a protocol should use

Protocols

	gRPC Protocol
	Configurations

	How to use mesher as sidecar proxy

	example

gRPC Protocol

Mesher support gRPC protocol

Configurations

To enable gRPC proxy you must set the protocol config

cse:
 protocols:
 grpc:
 listenAddress: 127.0.0.1:40101 # or internalIP:port

How to use mesher as sidecar proxy

Assume you original client is

 conn, err := grpc.Dial("10.0.1.1:50051",
 grpc.WithInsecure(),
)

set http_proxy

export http_proxy=http://127.0.0.1:40100

example

A gRPC example is here [https://github.com/go-mesh/mesher-examples/tree/master/protocol/grpc-go]

Sidcar-injector Deployment and Usage

Introduction

Sidecar is a way to run alongside your service as a second process.
The role of the sidecar is to augment and improve the application container, often without the application container’s knowledge.

sidecar is a pattern of “Single-node, multi container application”.

This pattern is particularly useful when using kubernetes as container orchestration platform.
Kubernetes uses pods. A pod is composed of one or more application containers. A sidecar is a utility container in the pod and its purpose is to support the main container. It is important to note that standalone sidecar doesnot serve any purpose, it must be paired with one or more main containers.
Generally, sidecar container is reusable and can be paired with numerous type of main containers.

For design pattern please refer

Container Design Pattern [https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45406.pdf]

Example:
The main container might be a web server, and it might be paired with a “logsaver” sidecar container that collects the web server’s logs from local disk and streams them to a cluster.

Injection

Two types

	Manual sidecar injection

	Automatic sidecar injection

Manual sidecar injection

In manual sidecar injection user has to provide sidecar information in deployment.

[image: communication]

Automatic sidecar injection

Sidecars can be automatically added to applicable Kubernetes pods using

mutating webhook admission controller [https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/]
Note that unlike manual injection, automatic injection occurs at the pod-level.
You won’t see any change to the deployment itself.

Verify [https://github.com/go-chassis/sidecar-injector#verification]

How it works

sidecar will deploy along side with main container as shown below

The figure shows the client and server communication using mesher as a sidecar.

[image: communication]

Explanation:

Mesher is deployed as a sidecar along with main container of server and client in a pod.

client and server will implement some rest api’s
and functionalities like
loadbalance, circuit-breaker, fault-injection, routerule, discovery etc… will be provided by mesher(sidecar).

workflow:

user/curl—–>client(main container)—–>mesher(sidecar container)—–>mesher(sidecar container)—–>server(main container).

Deployment Of Sidecar-Injector

Prerequisites [https://github.com/go-chassis/sidecar-injector#prerequisites]

Quick start [https://github.com/go-chassis/sidecar-injector#quick-start]

Use below links to build and Install sidecar

build [https://github.com/go-chassis/sidecar-injector#build]
install [https://github.com/go-chassis/sidecar-injector#install]

Annotations

Refer k8s document

Annotation [https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/]

Deployment of application

The Sidecar-injector will automatically inject mesher containers into your application pods.

Following are the annotations used to inject mesher sidecar into the user pod

	sidecar.mesher.io/inject:

The allowed values are “yes” or “y”

If “yes” or “y” provided the sidecar will inject in the main container.
If not, sidecar will not inject in the main container.

	sidecar.mesher.io/discoveryType:

The allowed values are “sc” and “pilot”

If value is “sc” it will use serviecComb service-center as a registry and discovery.
If value is “pilot” it will use the istio pilot as a discovery.

	sidecar.mesher.io/servicePorts:

serviceports are the port values of actual main server container append with “rest or grps”

ex: sidecar.mesher.io/servicePorts: rest:9999

	Required annotation for client and server

	sidecar.mesher.io/inject:

	Optional annotation for client and server

	sidecar.mesher.io/discoveryType:

	Optional annotation for server

	sidecar.mesher.io/servicePorts:

Prerequisites before deploying application

Label the chassis namespace with sidecar-injector=enabled

kubectl label namespace chassis sidecar-injector=enabled

kubectl get namespace -L sidecar-injector

[image: communication]

Usage of istio

To use istio following are the required annotation to be given in client and server yaml file
sidecar.mesher.io/inject: “yes” and sidecar.mesher.io/discoveryType:”pilot”

Example to use pilot registry [https://github.com/go-chassis/sidecar-injector/tree/master/example/WithoutServicePort/pilot]

deploy the examples using kubectl command line

kubectl create -f <filename.yaml> -n chassis

Usage of serviceComb

To use service-center following are the required annotation to be given in client and server yaml file
sidecar.mesher.io/inject: “yes” and sidecar.mesher.io/discoveryType:”sc”

Example to use sc registry [https://github.com/go-chassis/sidecar-injector/tree/master/example/WithoutServicePort/sc]

deploy the examples using kubectl command line

kubectl create -f <filename.yaml> -n chassis

Verification

Follow [https://github.com/go-chassis/sidecar-injector#verification]

Index

How to write doc in local

Prepare

	Install Python 2.7 with zlib, libssl-dev(openssl-devel)

	Install pip

	Install readthe doc support https://docs.readthedocs.io/en/latest/getting_started.html

	Install RTD module

sudo pip install sphinx_rtd_theme

Generate doc

In windows

cd docs
make.bat html

In linux

cd docs
sphinx-autobuild . _build/html

Check the result

	See html pages in _build folder

	Access http://127.0.0.1:8000

Use Istio as control plane

	Discovery
	Introduction

	Configuration

	examples

	Route Rule
	Mesher Configurations

	Kubernetes Configurations

	Istio v1alpha3 router configurations

Sidecar usage guide

	Sidcar-injector Deployment and Usage
	Introduction

	Injection

	Manual sidecar injection

	Automatic sidecar injection

	How it works

	Deployment Of Sidecar-Injector

	Annotations

	Deployment of application

	Prerequisites before deploying application

	Usage of istio

	Usage of serviceComb

	Verification

Discovery

Introduction

Istio Pilot can be integrated with Mesher, working as the Service Discovery component.

Configuration

edit chassis.yaml.

registrator.disabled

Must disable registrator, because registrator is is used in client side discovery. mesher leverage server side discovery which is supported by kubernetes

serviceDiscovery.type

specify the discovery plugin type to “pilot” or “pilotv2”, since Istio removes the xDS v1 API support from version 0.8, if you use Istio 0.8 or higher, make sure to set type to pilotv2.

serviceDiscovery.address

the pilot address, in a Istio environment, for xDS v1 API, pilot usually listens on the http port 8080, while for xDS v2 API, it becomes a grpc port 15010.

examples

cse: # Using xDS v1 API
 service:
 Registry:
 registrator:
 disabled: true
 serviceDiscovery:
 type: pilot
 address: http://istio-pilot.istio-system:8080

cse: # Using xDS v2 API
 service:
 Registry:
 registrator:
 disabled: true
 serviceDiscovery:
 type: pilotv2
 address: grpc://istio-pilot.istio-system:15010

Route Rule

Instead of using CSE and route config to manage route, mesher supports Istio as a control plane to set route rule and follows the envoy API reference to manage route. This page gives the examples to show how requests are routed between micro services.

Mesher Configurations

In Consumer router.yaml, you can set router.infra to define which router plugin mesher fetches from. The default router.infra is cse, which means the routerule comes from route config in CSE config-center. If router.infra is set to be pilot, the router.address is necessary, such as the in-cluster istio-pilot grpc address.

router:
 infra: pilot # pilot or cse
 address: http://istio-pilot.istio-system:15010

In Both consumer and provider registry configurations, the recommended one shows below.

cse:
 service:
 registry:
 registrator:
 disabled: true
 serviceDiscovery:
 type: pilot
 address: http://istio-pilot.istio-system:8080

Kubernetes Configurations

The provider applications of v1, v2 and v3 version could be deployed in kubernetes cluster as Deployment with differenent labels. The labels of version is necessary now, and you need to set env to generate nodeID in Istio system, such as POD_NAMESPACE, POD_NAME and INSTANCE_IP.

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 labels:
 version: v1
 app: pilot
 name: istioserver
 name: istioserver-v1
 namespace: default
spec:
 progressDeadlineSeconds: 600
 replicas: 1
 revisionHistoryLimit: 10
 selector:
 matchLabels:
 app: pilot
 version: v1
 name: istioserver
 strategy:
 rollingUpdate:
 maxSurge: 1
 maxUnavailable: 1
 type: RollingUpdate
 template:
 metadata:
 labels:
 app: pilot
 version: v1
 name: istioserver
 spec:
 containers:
 - image: gosdk-istio-server:latest
 imagePullPolicy: Always
 name: istioserver-v1
 ports:
 - containerPort: 8084
 protocol: TCP
 resources: {}
 terminationMessagePath: /dev/termination-log
 terminationMessagePolicy: File
 env:
 - name: CSE_SERVICE_CENTER
 value: http://istio-pilot.istio-system:8080
 - name: POD_NAME
 valueFrom:
 fieldRef:
 apiVersion: v1
 fieldPath: metadata.name
 - name: POD_NAMESPACE
 valueFrom:
 fieldRef:
 apiVersion: v1
 fieldPath: metadata.namespace
 - name: INSTANCE_IP
 valueFrom:
 fieldRef:
 apiVersion: v1
 fieldPath: status.podIP
 volumeMounts:
 - mountPath: /etc/certs/
 name: istio-certs
 readOnly: true
 dnsPolicy: ClusterFirst
 initContainers:
 restartPolicy: Always
 schedulerName: default-scheduler
 securityContext: {}
 terminationGracePeriodSeconds: 30
 volumes:
 - name: istio-certs
 secret:
 defaultMode: 420
 optional: true
 secretName: istio.default

Istio v1alpha3 router configurations

Traffic-management [https://istio.io/docs/tasks/traffic-management/request-routing/] gives references and examples of Istio new router rule schema. First, subsets is defined according to labels. Then you can set route rule of differenent weight for virtual services.

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: istioserver
spec:
 host: istioserver
 subsets:
 - name: v1
 labels:
 version: v1
 - name: v2
 labels:
 version: v2
 - name: v3
 labels:
 version: v3

NOTICE: The subsets only support labels of version to distinguish differenent virtual services, this constrains will canceled later.

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: istioserver
spec:
 hosts:
 - istioserver
 http:
 - route:
 - destination:
 host: istioserver
 subset: v1
 weight: 25
 - destination:
 host: istioserver
 subset: v2
 weight: 25
 - destination:
 host: istioserver
 subset: v3
 weight: 50

 _images/pod.png
kubectl get deployment client -o wide
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE CONTAINERS
client 1 1 1 1 13s client,mesher

_static/ajax-loader.gif

_images/label.png
NAME.
default
Kube-public
Kube-systen
chassis

STATUS
active
Active
Active
Active

2en
260
1en
m

SIDECAR-INJECTOR

enabled

_images/mesher.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to Mesher’s documentation!

 		
 Introductions

 		
 What is mesher

 		
 Concepts

 		
 Sidecar

 		
 go chassis

 		
 DestinationResolver

 		
 Source Resolver

 		
 Admin API

 		
 Get started

 		
 Before you start

 		
 Quick start

 		
 Local

 		
 Run on different infrastructure

 		
 Sidecar injector

 		
 User guides

 		
 Mesher command Line

 		
 Options

 		
 Profile Mesher

 		
 Configurations

 		
 Admin API

 		
 Configurations

 		
 Local Health check

 		
 Options

 		
 Destination Resolver

 		
 Configurations

 		
 Protocols

 		
 gRPC Protocol

 		
 Configurations

 		
 How to use mesher as sidecar proxy

 		
 example

 		
 Sidcar-injector Deployment and Usage

 		
 Introduction

 		
 Injection

 		
 Manual sidecar injection

 		
 Automatic sidecar injection

 		
 How it works

 		
 Deployment Of Sidecar-Injector

 		
 Annotations

 		
 Deployment of application

 		
 Prerequisites before deploying application

 		
 Usage of istio

 		
 Usage of serviceComb

 		
 Verification

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

